99 research outputs found

    Surrogate-based multi-objective optimization of firing accuracy and firing stability for a towed artillery

    Get PDF
    Determination of general parameters is one of the most essential tasks in optimal structural designs to increase firing accuracy or firing stability, since they are two of the most important performance requirements in artillery designs. This paper presents a multi-objective optimization approach, based on multidisciplinary agent model method. An experiment verified artillery multi-body rigid-flexible coupled dynamic model was first presented. Sample library was generated by optimal Latin hypercube design algorithm and this dynamic model. Then a radial basis function-back propagation neural (RBF-BP series combine) network model was developed to predict firing parameters, used the sample library to train and test the validation of developed neural network model. Finally, an application case was given by NSGA-II and the max-min criterion, its results demonstrate the effectiveness of our method through comparing with its original value

    Chemical Vapor Deposited Diamond Films for Self-Referencing Fiber Optic Raman Probes

    Get PDF
    Diamond thin films grown by the microwave plasma enhances chemical vapor deposition (CVD) process have been investigated as an internal reference in fiber optic remote Raman sensing. The growth parameters have been optimized for diamond thin films on quarts substrates using a gas mixture of methane, carbon dioxide, and hydrogen. The resulting films exhibit essentially no Raman spectral background while exhibiting a strong Raman peak at 1332 cm-¹. The films are used as an internal reference in the quantitative measurement of chemical concentration using remote fiber optic Raman sensing. Internal referencing is accomplished by normalizing all spectral intensities of the chemical species to the integrated area of the CVD diamond reference peak at 1332 cm-¹ and verified using ethanol/water solutions. It is shown that the measurement is independent of laser power fluctuations

    A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples

    Get PDF
    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Analysis of Micro-Segregation of Solute Elements on the Central Cracking of Continuously Cast Bloom

    No full text
    On the basis of the Brody–Flemings model and modified Voller–Beckermann model, an analytical model of micro-segregation is established by considering the actual solidification cooling conditions of bloom. According to the developed model, the interdendritic solute distribution at the origin of the cracking gap is obtained. It is found that both phosphorus and sulfur have quite severe segregation, but both carbon and manganese have slight segregation; these results agree well with the semiquantitative analysis results of the scanning electron microscope (SEM). At the same time, the interdendritic segregation leads to an enhanced increase in the temperature range of crack formation; correspondingly, the possibility of cracking significantly increases and, thus, element segregation is the internal cause of crack formation. On the other hand, taking into account heat transfer, phase transformation, and metallurgical pressure, the strain of the solid shell is revealed through finite element software. When the solid shell thickness is equal to the distance of 90 mm between the opening point of the crack and the inner arc side, the tensile strain of the solid front is much bigger than the critical strain, which meets the external cause of crack formation; therefore, reasons for the cracking of blooms are successfully found
    corecore